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Instant chaos, extreme parametric uncertainty, and sustained chaotic transients in
nonlinear continuum mechanics

Ira B. Schwartz, Ioana Triandaf, Yvette Wood"*

US Naval Research laboratory

Special Project in Nonlinear Science, Code 6700.3
Plasma Physics Division, Washington, DC 20375 USA
schwartz@nlschaos.nrl.navy.mil

ABSTRACT

Bifurcation to high-dimensional hyperchaos is observed in a
driven coupled pendulum-flexible rod system. When the rod is
in resonance with the pendulum, the system changes from a low
dimensional attractor to a high dimensional attractor abruptly. It
is shown that high dimensional chaotic dynamics is hysteretic,
and exhibits extreme sensitivity with respect to small parameter
changes. Such sensitivity poses a problem in obstructing
predictability in mechanics. A brief discussion of sustaining
chaos to prevent resonance is included.

INTRODUCTION

One of the simplest problems studied in nonlinear physics is that
of the forced, damped pendulum (Baker, 1996), (Miles, 1993).
Studied extensively in isolation, the pendulum is always
attached to some support, such as a stiff rod, and is used in many
active control mechanisms, such as vibration absorbers
(Starret(,1995), (Cuvalci, 1996). If the rod is sufficiently stiff,
one expects the pendulum dynamics to be stightly perturbed
from the ideal infinitely stiff case. We review some new
dynamical behavior in the numerical simulations of a forced,

" damped pendulum coupled to a linear rod which is flexible. We

examine the system when it is operating in a resonant mode,

. where the pendulum frequency is half that of the fundamental

frequency of the rod, as well as a non-resonant case. It is known
that when the rod is sufficiently stff, the dynamics resides on a
global slow invariant manifold, i.c., the rod is slaved to the
motion of the pendulum (Georgiou and Schwartz, 1999). As a
result of this slaving motion, the dynamics is a perturbation of a
parametrically driven pendulum.

However, when operating at resonance, there exists some
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critical amplitude of the driving force that causes a
discontinuous change from periodic behavior to hyper-chaotic
behavior, where there are two or more positive Lyapunov
exponents.

In contrast, non-resonant dynamics exhibits multiple chaotic
attractors, one which is statistically constrained to a low
dimensional surface, and one which is not. In both cases,
multiple attractors as well as long lived chaotic transients exist.
Such multiplicity gives rise to an obstruction in predicting the
type of asymptotic behavior due to small uncertainties in
parameters and/or data (Schwarlz, ct al, 1999). Either chaotic or
periodic behavior may result for given initial data. To eliminate
the possibility of periodic resonant behavior, the results of a
new parametric control procedure to sustain chaos are presented
(Schwartz and Triandaf. 1996), (Triandaf and Schwartz, 2000).

MODEL EQUATIONS

The dynamical system we consider (see Fig.1) consists of a
planar pendulum of length L,,mass M,, and viscous
dissipation coefficient C, attached to the lower end B of a linear
viscoelastic rod of length L, , cross-section A, , mass density p,,
elasticity modulus E, , coefficient of internal viscous dissipation
C .

r
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Figure 1. Rod-Pendulum Geometry.

The upper end 4 of the rod is subject to a periodic motion x,(1).
Let u(x, 1) and 6(z) denote respectively the displacement field of
the rod with respect to A and the angular displacement of the
pendulum mass.

Lett=2X ¢ = @, (derivative with respect to < is denoted by
a “dot”, wﬁ'ére mf, = £ js the uncoupled pendulum natura]
frequency denote norirtilized spatial and temporal variables.
Letting U = £ denote the dimensionless displacement field for
the rod, Lheldynamics of the rod-pendulum configuration are
described by:

6 = —[1-Vg(1) +)2A(»c)]sine—2cpé

2.2

Ve = Vi DNV (BT - ()

2 2
IiT":XA(t)
V(0,7) = 0
2. 2
V’&(I»T) = —&‘EL[I ~7¢9, 8, T)]cosO )
7(6,6,1) = 62+[1—)EB(1)]cos6

The details of the model and parameter scalings are given in
(Georgiou and Schwartz, 1999). The physical parameters that
control the coupling between the pendulum and the rod are the
frequency ratio p = —£ and the mass ratio f . For fixed B, the
limit of coupled syster Egs. (1-2) as u — Odescribes the
motions of the parametrically forced uncoupled pendulum. A
modal expansion of the displacement field reduces the coupled
system to the following set of N coupled oscillators. The phase
space of our truncated system for analysis is given by the
2N + 3 dimensional vector (¥, Z) where
Z = (({Z]- 2}, {23. 4D {Z2N~ I zzN}) and ¥ = (8. 6, ya) .
Here Zrepresents the scaled states of the first N rod modal
oscillators, and w, represents the angle of the periodic forcing.

SPATIO-TEMPORAL BEHAVIOR

Resonance

We study the resonance sitnation where the rod has a
fundamental natural frequency of 2, and the drive frequency i
also equal to 2. (Recall the natural frequency of the pendulum
unity, making p = 3 .) The other fixed parameters of the
normalized model are the mass ratio (unity), and damping
coefficients. The variable control parameter is forcing
amplitude .. We plot in Fig. 2 a bifurcation diagram of the
attractor of the modal expansion to Egs. (1-2) that is observed
for the angular velocity of the pendulum sampled at the period
of the drive. The control parameter throughout the Paper is the
amplitude of periodic forcing, o .

T v T T -
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o

Figure 2. Bifurcation diagram of pendulum velocity
sampled at the forcing frequency as a function of o .The
coupling parameter is py = 3

The 2 to 1 internal resonance in the system results in a stable
period 2 motion in the pendulum for a wide range of parameter
values, including o very small. (The linear coupled modes
exhibit period 1 behavior when the pendulum is in a period 2
cycle.) Notice that there appears o be no period doubling route
to chaos as the parameter is increased, That is, the period 2
cycle appears to undergo instability directly to a chaotic
altractor. Also, there is a region of hysteresis between the period
2 and the chaotic attractor. ’

When viewing the dynamics of extended behavior in spatially
extended systems, in general it is not sufficient to represent the
dynamics by sampling data at individual points, as in the
method of time dclay embedding (Schwartz and Triandaf,
1996b). instead, the method of snapshots (Sirovich,1987) is a
version of the Karhunen-Loeve method to analyze the data, and
compules the topological dimension of the attractor.

Copyright © 1999 by ASME
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Figure 3. KL dimension as a function of o exhibiting
hysteresis. Notice that when chaos appears in resonance, it is
high dimensional.

Figure 3 shows the dimension as a function of the forcing
amplitude. Plotted are two runs for both increasing and
decreasing o . For low parameter values, the dimension is just 4.
As the parameter is increased past the critical onset of chaos, we
see a dramatic change in the size of the dimension, which is now
more than three times that of the slaved periodic motion. The
system must have excited more modes in order to generate such
a high dimension.

Non-resonance

If the system is tuned away from resonance, the situation
becomes more complicated. Whereas resonance had periodic
oscillations residing on a low dimensional manifold, chaotic
oscillations now appear for both small and large p, which
designates a weak and strong coupling, respectively. In Fig. 4,
projection of the motion of the pendulum onto the (6, 6) plane
shows the phase portrait when the dynamics is sampled at the
forcing period. Notice the structure that appears due to the
manifolds which bound the motion on a two-dimensional
surface. In contrast, Fig. 5 shows the same projection when the
coupling between the rod and the pendulum is large. Here the
motion is not constrained by any topological structure since the
dynamics is now higher dimensional.

Waak Coupled Chaos.
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Figure 4. Low dimensional chaos, when p = 0.025.
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Figure 5. High dimensional chaos, when 1 = 0.288

Examination of the K. dimension reveals that although it is
low for the weakly coupled case, it is not necessarily as low as
the resonant case. This is due in part to intermittent escape off
the manifolds. To see this, we explicitly compute the dynamics
using Eqs. 1-2, and compare it to the dynamics approximated on
the manifold using a singular (or center) manifold expansion
(Carr, 1981), (Schwartz and Georgiou, 1999). The error
between the two is then explicitly computed at the rod tip. For
small coupling, the error is small for most of the time, but is not
uniformly small, since the scale is absolute. The dynamics does
in fact leave the manifold intermittently. Therefore, on average,
the dynamics remains low dimensional. On the other hand, the
strongly coupled case shows that the dynamics rarely visits the
low dimensional manifold.
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Figure 6. The error between the actual and predicted
dynamics of the rod at the tip for weak coupling (left) and
strong coupling (right).

EXTREME PARAMETRIC SENSITIVITY

The previous discussion should make it clear that for either
the near-resonant case or non resonant case, there exist multiple
attractors. When the attractors are chaotic and non-identical,
one needs to classify the attractors. One way to achicve this is to
compute the number of positive Lyapunov exponents for each
attractor. This gives a statistical measurc of the average number
of unstable directions along the attractor. We have done this for
the near-resonant case. and have found the existence of three
distinct attractors: periedic, chaotic with one positive Lyapunov
exponent, and one chaouc attractor with two positive Lyapunov
exponents. (See (Schwantz, Wood, Georgiou,1999) for
computational details.) Figure 7 illustrates the complex

Copyright © 1999 by ASME




intertwining in parameter space of the three attractors. Such
complexity forces one to make large errors in the long time
prediction of the type of behavior one expects. That is, for
arbitrary small amounts of uncertainty in the parameter value, it
is almost impossible to predict the outcome observed even
statistically.

1.385 1400 1415

Farcing Ampitiude

0.0 1.0 20
# of Posttive Lyapunov Exponents

Figure 7. Number of positive Lyapunov exponents as a
function of the forcing amplitude in the near resonance
parameters.

We perform the following uncertainty experiment. Pick
parameter o , and measure number of positive Lyapunov
Exponents, Ny (o) . Perturb the parameter by a small
amount,, called the uncertainty, which yields o =oy+e. If
Ny (o) # Ny p(a) , then a ‘is defined to be uncertain. We then
plot log of uncertain points versus the log of the uncertainty.
The result is shown in Fig. 8. he slope is computed to be about
0.012, The dashed line designates what a good experiment
would yield.
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Figure 8. Fraction of uncertainty parameter values as a
function of uncertainty. The dashed line illustrates an ideal
experiment for prediction. In extreme parametric
uncertainty, large increases in precision (decreases in
uncertainty) do not significantly decrease the number of
uncertain points. Hence, the obstruction to predictability.

DISCUSSION

In the above sections, we briefly outlined the dynamics of a
simple continuum mechanics mode in near-resonance and non-
Tesonances cases. In the resonant case, where the frequency
ration between the pendulum and rod was 1:2, we found the co-
existence between periodic motion constrained to a surface, and
high dimensional (in a KI. measure) of chaotic motion. In the
non-resonance case, we found low dimensional and high
dimensional chaos co-existing in large regions of forcing
amplitude. As a result of multiple attractors in the resonance
cases, we defined and applied a measure of extreme parametric
sensitivity, which ultimately obsiructs asymptotic predictability
in certain parameter regions of interest. .

In addition to asymptotic attractors, there do exist temporary
transient phenomena in this mode] as well as many other
nonlinear systems, but might be long lived (Schwartz and
Triandaf, 1996a), (Triandaf and Schwartz, 2000). Such long
lived transients have all the characteristics of chaos, but they are
not attracting. In Fig. 9. we see that for a truncated one mode
model of Eqs. 1-2, a chaotic attractor exists at the right (open
squares). However, for lower values of forcing, the attractor
asymptotes to a period 2 attractor.

In many applications. it is desirable in the resonance cases, to
keep the asymptotic periodic state from occurring. Solving this
difficult control problem is indeed possible if one implements a
topological procedure known as segmentation (Triandaf and
Schwartz, 2000). That is, the goal of the control dynamics is to
sustain chaos were there is none by using perturbations of the
parameter o. Figure 9 illustrates the results of the procedure,
where chaos (dots) is sustained over the whole region shown. In
ameasure theoretic sense based on the above definition of
extreme parametric sensitivity, the technique increases ones
predictability by eliminating the periodic attractors.
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Figure 9. Transient and sustained chaos of a truncated
model

The actual parameter fluctuations used 1o sustain chaos

Copyright © 1999 by ASME




throughout the parameter region are shown as a function of
time. Notice that as we move further away from the original
chaotic attractor, the frequency of intervention increases.
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iterate

Figure 10.
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